Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 1): 100-109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868742

RESUMO

Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.


Assuntos
Compostos de Alumínio/análise , Raízes de Plantas/química , Espectroscopia por Absorção de Raios X/métodos , Compostos de Alumínio/toxicidade , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Fagopyrum/química , Fagopyrum/efeitos dos fármacos , Pectinas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/química , Poluentes do Solo/toxicidade , Glycine max/química , Glycine max/efeitos dos fármacos , Especificidade da Espécie , Síncrotrons
2.
Environ Sci Technol ; 53(21): 12416-12424, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553176

RESUMO

Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.


Assuntos
Iodetos , Iodo , Substâncias Húmicas , Peróxido de Hidrogênio , Oxirredução , Espectroscopia por Absorção de Raios X
3.
Front Plant Sci ; 8: 1377, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824696

RESUMO

In wheat (Triticum aestivum), it is commonly assumed that Al is detoxified by the release of organic anions into the rhizosphere, but it is also possible that detoxification occurs within the apoplast and symplast of the root itself. Using Al-resistant (ET8) and Al-sensitive (ES8) near-isogenic lines of wheat, we utilized traditional and synchrotron-based approaches to provide in situ analyses of the distribution and speciation of Al within root tissues. Some Al appeared to be complexed external to the root, in agreement with the common assumption. However, root apical tissues of ET8 accumulated four to six times more Al than ES8 when exposed to Al concentrations that reduce root elongation rate by 50% (3.5 µM Al for ES8 and 50 µM for ET8). Furthermore, in situ analyses of ET8 root tissues indicated the likely presence of Al-malate and other forms of Al, predominantly within the apoplast. To our knowledge, this is the first time that X-ray absorption near edge structure analyses have been used to examine the speciation of Al within plant tissues. The information obtained in the present study is important in developing an understanding of the underlying physiological mode of action for improved root growth in systems with elevated soluble Al.

4.
Chem Commun (Camb) ; 52(1): 190-3, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26511008

RESUMO

The reaction between an uncharged Li2FeSiO4 (LFS) cathode and a LiPF6-EC/DMC electrolyte is revealed by in situ XANES in coin cells. This study shows clear evidence of delithiation and iron oxidation in LFS prior to cycling. Subsequent cycling appears to partially restore the original lithiation level, an observation that needs to be taken into consideration in future LFS development work.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Ferro/química , Lítio/química , Silicatos/química , Eletrodos , Oxirredução
5.
J Environ Radioact ; 131: 40-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24238918

RESUMO

Uranium speciation and retention mechanisms onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction, U L3-edge X-ray absorption near-edge structure (XANES) spectroscopy, fluorescence mapping and µ-XANES. Under oxidized conditions, U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH < 4 and pH > 8. Sequential extraction indicated that the U species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and organic fraction (Na-pyrophosphate extractable). Uranium L3-edge XANES spectra of the U-bound sediments were nearly identical to that of uranyl acetate. Based on fluorescence mapping, U and Fe distributions in the sediment were poorly correlated, U was distributed throughout the sample and did not appear as isolated U mineral phases. The primary oxidation state of U in these oxidized sediments was U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species or to secondary mineral formation. Collectively, this study suggests that U may be strongly bound to wetland sediments, not only under reducing conditions by reductive precipitation, but also under oxidizing conditions through NOM-uranium bonding.


Assuntos
Sedimentos Geológicos/química , Poluentes Radioativos do Solo/análise , Urânio/análise , Adsorção , Locais de Resíduos Perigosos , Oxirredução , Monitoramento de Radiação , Resíduos Radioativos , Poluentes Radioativos do Solo/química , South Carolina , Urânio/química , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...